University of Mannheim School of Social Sciences Mathematics for Political Scientists, Fall 2022 Carlos Gueiros

Solutions Set Theory II

1. Let $S = \{\text{Homer, Marge, Bart, Lisa, Maggie}\}$. Enumerate the following relations.

(a) "is a sibling of"

$$R = \{(B, L), (B, Ma), (L, B), (L, Ma), (Ma, B), (Ma, L)\}$$

- (M) for Marge and (Ma) for Maggie.
- (b) "is married to"

$$R = \{ (H, M), (M, H) \}$$

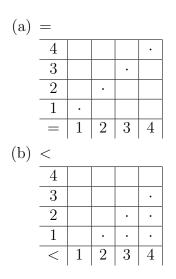
(c) "is taller than"

$$R = \{(M, H), (M, B), (M, L), (M, Ma), (H, B), (H, L), (H, Ma), (B, L), (B, Ma), (L, Ma)\}$$

(d) "is older than"

$$R = \{(H, M), (H, B), (H, L), (H, Ma), (M, B), (M, L), (M, Ma), (B, L), (B, Ma), (L, Ma)\}$$

2. Let $S = \{1, 2, 3, 4\}$. Graph the following relations.



(c)
$$R = \{(1, 1), (2, 1), (2, 2), (3, 3), (4, 3), (4, 4)\}$$

$$\begin{array}{c|c}
\hline
4 & & & & \\
\hline
3 & & & & \\
\hline
2 & & & & \\
\hline
1 & & & & \\
\hline
R & 1 & 2 & 3 & 4
\end{array}$$

- 3. Determine the following sets.
 - (a) The upper contour set of Lisa in 1c.

$$S = \{ (B, L), (M, L), (H, L) \}$$

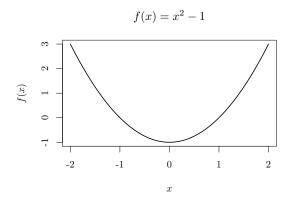
(b) The lower contour set of Bart in 1d.

$$S = \{(M, B), (H, B)\}$$

(c) The upper contour set of 2 in 2b.

$$S = \{(1,2)\}$$

(d) Let $S = \mathbb{R}$. Determine the upper contour set of $x \in S$ given the relation $R = \{(x, y) \in S \times S | x^2 - 1 = y\}$. Graph the binary relation. Is the upper contour set convex or concave or none of both?



The upper contour set is the area above the graph. It is convex.

- 4. Check whether the following relations are reflexive, irreflexive, transitive, complete, symmetric, antisymmetric and/or asymmetric. Also check whether they are a weak, strict, weak partial or strict partial order (or none of those).
 - (a) \leq (b) <(c) = (d) $R_1 = \{(1,1), (1,2), (1,3), (1,4)\}_2$

(e) $R_2 =$ "was born before"

(f) $R_3 = \{(a, a), (a, a)\}$	b)	
--------------------------------	----	--

•	ref	irr	trans	com	sym	anti	asym	weak	strict	partial
\leq	\checkmark	•	\checkmark	\checkmark	٠	\checkmark	•	\checkmark		\checkmark
<	٠	\checkmark	\checkmark	\checkmark	٠	\checkmark	\checkmark		\checkmark	\checkmark
=	\checkmark	٠	\checkmark	\checkmark	\checkmark	\checkmark	•	\checkmark		\checkmark
R_1	\checkmark	٠	\checkmark	٠	٠	\checkmark	\checkmark			\checkmark
R_2	٠	\checkmark	\checkmark	٠	٠	\checkmark	•			\checkmark
R_3	\checkmark	٠	\checkmark	٠	٠	\checkmark	٠			\checkmark

5. Let $S = \{1, 2, 3\}$. Show by example that...

(a) ...if R is asymmetric, it is also antisymmetric. An asymmetric relation, say >, is:

$$R_1 = (2, 1), (3, 2), (3, 1)$$

For antisymmetry is must hold that $\forall x, y, \in S, [(xRy) \land (yRx)] \implies (x = y)$. Since the hypothesis is always false, the statement is always true and thus, the relation is antisymmetric.

- (b) ...if R is asymmetric, it is also irreflexive. Consider the same relation R_1 . Irreflexivity requires that $\nexists x \in S, xRx$ which is the case.
- (c) ... if R is irreflexive and transitive, it is also a symmetric. Consider the irreflexive relation

 $R_2 = \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\}.$

To meet also transitivity, the relation reduces to

$$R_3 = \{(1,2), (1,3), (2,3)\}.$$

It can be seen that this relation is also asymmetric.

(d) ... if R is symmetric and antisymmetric, it is also transitive. As an example consider the relation = which is symmetric and also antisymmetric.

$$R_4 = \{(1,1), (2,2), (3,3)\}.$$

This relation is also transitive since the hypothesis is always false and therefore the statement is true.

As another example consider the relation \neq . This relation is symmetric, but it is not antisymmetric and therefore not necessarily transitive.

6. Let $A = \{\{a\}, \{b\}, \{a, b\}\}$. Let $B = \mathcal{P}(A) \setminus \emptyset$, where $\mathcal{P}(A)$ is the *power set*, the set of all subsets of A. Define a binary relation $R \equiv \subseteq$.

(a) Explicitly enumerate B, and state its cardinality. The power set of A minus the empty set is

$$B = \{\{\{a\}\}, \{\{b\}\}, \{\{a,b\}\}, \{\{a\}, \{b\}\}, \{\{a\}, \{a,b\}\}, \{\{b\}, \{a,b\}\}, \{\{a\}, \{b\}, \{a,b\}\}\} \}$$

Its cardinality is 7 $(2^3 - 1)$.

(b) Prove whether R is a weak order on B.

A weak order requires reflexivity, completeness and transitivity. Consider the completeness requirement. $\{\{a\}\} \subseteq \{\{b\}\}$ is false. The reverse, $\{\{b\}\} \subseteq \{\{a\}\}$ is also false. Thus, the relation is not complete and therefore R is not a weak ordering on B.

(c) Prove whether R is a partial order on B.

A partial ordering requires reflexivity, transitivity and antisymmetry. Reflexivity requires that $\forall x \text{ in } S, xRx$. This is clearly the case, since \subseteq includes equality and thus $\forall x \text{ in } B, x = x$. Transitivity is also given: If $x \subseteq y$ and $y \subseteq z$, then $x \subseteq z$. For antisymmetry, it needs to hold that (xRy) and (yRx)imply x = y. The only case for which the premise can hold for the relation \subseteq is if x = y. Thus, \subseteq is a partial order on B.

(a) Let R_1 and R_2 be transitive relations on a set S. Does it follow that $R_1 \cup R_2$ is transitive?

No. A counterexample: $S = \{1, 2\}$. $R_1 = >'= \{(2, 1)\}$ and $R_2 = <'= \{1, 2\}$. And $R_1 \cup R_2 = \{(1, 2), (2, 1)\}$ is not transitive.

(b) Let R_1 and R_2 be transitive relations on a set S. Does it follow that $R_1 \cap R_2$ is transitive?

Yes. Assume R_1 and R_2 are both transitive and let $(a, b), (b, c) \in R_1 \cap R_2$. Then $(a, b), (b, c) \in R_1$ and $(a, b), (b, c) \in R_2$. It is given that both R and S are transitive, so $(a, c) \in R_1$ and $(a, c) \in R_2$. Therefore $(a, c) \in R_1 \cap R_2$. This shows that for arbitrary $(a, b), (b, c) \in R_1 \cap R_2$ we have $(a, c) \in R \cap R_2$. Thus $R_1 \cap R_2$ is transitive.