Extra Exercise Optimization Example for Game Theory

Carlos Gueiros

September 2, 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Nash Equilibria With Continuous Strategies

Two firms 1 and 2 seek to influence policy implementation by a bureaucrat *B*. The final policy outcome is a function of the money they spend to please the bureaucrat (some sort of corruption). Firm 1's most preferred policy is $x_1 = 1$ and firm 2 's most preferred policy is $x_2 = 0$. The bureaucrat's default policy that she would implement without being bribed is $x_B = \frac{1}{2}$. Both firms simultaneously choose an amount of money, $s_i \in [0, 1]$. The final policy is

$$x = x_B + s_1 - s_2$$

Firm 2 has fewer resources and is therefore more negatively affected by increasing amounts of money spent. The utility functions of the firms are given by

$$u_1(s_1, s_2) = -(x - x_1)^2 - s_1$$

$$u_2(s_1, s_2) = -(x - x_2)^2 - 2s_2^2$$

(a) Write down the first and second order conditions. (b) Solve for pure strategy Nash equilibria.

Solution I

First we write up the full utility functions:

$$u_{1}(s_{1}, s_{2}) = -\left(\frac{1}{2} + s_{1} - s_{2} - 1\right)^{2} - s_{1}$$
$$= -\left(-\frac{1}{2} + s_{1} - s_{2}\right)^{2} - s_{1}$$
$$u_{2}(s_{1}, s_{2}) = -\left(\frac{1}{2} + s_{1} - s_{2} - 0\right)^{2} - 2s_{2}^{2}$$
$$= -\left(\frac{1}{2} + s_{1} - s_{2}\right)^{2} - 2s_{2}^{2}$$

Solution II

Then we take the first derivatives:

$$\begin{aligned} \frac{\partial u_1(s_1, s_2)}{\partial s_1} &= -2\left(-\frac{1}{2} + s_1 - s_2\right) \cdot 1 - 1\\ &= 1 - 2s_1 + 2s_2 - 1\\ &= -2s_1 + 2s_2\\ \frac{\partial u_2(s_1, s_2)}{\partial s_2} &= -2\left(\frac{1}{2} + s_1 - s_2\right) \cdot (-1) - 4s_2\\ &= 2\left(\frac{1}{2} + s_1 - s_2\right) - 4s_2\\ &= 1 + 2s_1 - 2s_2 - 4s_2\\ &= 1 + 2s_1 - 6s_2\end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Solution III

Now, we write down FOC :

$$\frac{\partial u_1(s_1, s_2)}{\partial s_1} \stackrel{!}{=} 0$$

$$-2\hat{s}_1 + 2s_2 \stackrel{!}{=} 0$$

$$\hat{s}_1 = s_2$$

$$\frac{\partial u_2(s_1, s_2)}{\partial s_2} \stackrel{!}{=} 0$$

$$1 + 2s_1 - 6\hat{s}_2 \stackrel{!}{=} 0$$

$$\hat{s}_2 = \frac{1}{6} + \frac{1}{3}s_1$$

Now, we write down the SOC:

$$\frac{\partial \partial u_1(s_1, s_2)}{\partial s_1 \partial s_1} = -2 < 0 \rightarrow \text{Maximum}$$
$$\frac{\partial \partial u_2(s_1, s_2)}{\partial s_2 \partial s_2} = -6 < 0 \rightarrow \text{Maximum}$$

Solution IV

Solution b: To solve the game for Nash Equilibrium means that one player has to maximize his payoff given the strategy of the other player. We insert the FOC equations and solve for \hat{s}_2 :

$$\hat{s}_2 = rac{1}{6} + rac{1}{3}\hat{s}_2$$

 $rac{2}{3}\hat{s}_2 = rac{1}{6}$
 $\hat{s}_2 = rac{1}{4}$

Now, working with the previous equations gives us the strategy for the first player:

$$\hat{s_1} = \frac{1}{4}$$

The SOC tell us that this is a maximum and both strategies are in the strategy space. The Nash equilibrium is given by $NE = \left\{ \left(\frac{1}{4}, \frac{1}{4}\right) \right\}$